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1 Concepts of Indices: Review

Long before databases came into use systems of organizing information used the concepts

of an index. Examples of indices include the list of key words at the back of most books,

library card catalogs and topic indices found in phone books. An index optimizes the data

search process by providing a smaller, ordered subset of the data or meta data.

With the advent of computers came the process of structuring and managing information.

Similar types of information such as addresses have similar data: street number, street name,

city, state and zip. Each piece is stored in a �eld. Each address would then have the same set

of �elds. We store information in rows, often called records, where each row is an element in

a set of information (e.g. each row may hold an address). The names of the �elds describe

the information stored in each �eld and are often times strongly typed. A single set of

information looks like a table and is often identi�ed as such. Although these sets can be

operated on and related to one another using relational algebra, the result is just another

set. Thus we focus on the organizing and accessing of information in a set.

Searching a table of information can be time consuming especially if the information is

not ordered by the search parameters. On the other hand, keeping the information ordered in

multiple ways while inserting, updating and deleting rows may be extremely time consuming

without some organizational scheme. Indices are employed to optimize the search process

and solve this problem. They allow the use of a search key made up of a �eld or set of �elds

used to look up a record.

To complete the background to indices we are going to review the following concepts:

primary indices, dense and sparse indices, multilevel indices and hashing from [18, 22].

1.1 Primary and Secondary Indices

A search key along with pointers to one or more records comprise an index record or index

entry. The sorted list of these entries forms an index.
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De�nition 1 Given a �le containing a set of records, the primary index de�nes the se-

quential ordering of those records within the �le. Primary indices are also called clustering

indices.

De�nition 1 gives us the idea that there is some piece of information in each record that

provides some natural ordering called the search key. If that information is not unique than

there will be an arbitrary ordering of non-unique records. Consider a list of customers sorted

by state, city. There may be hundreds of customers just in Lincoln, Nebraska. Searching

using state and city as the search key would then require an evaluation of each record that

contains the search key. Clearly there are many ways to order a set of records, and the choice

of the primary index may be related to tasks that require sequentially processing the table.

The second type of index that naturally comes to mind, is given in De�nition 2 below.

De�nition 2 Given a �le containing a set of records, secondary indices de�ne search keys

whose order is di¤erent from the sequential order of the �le.

1.2 Dense and Sparse Indices

When we have an index record for every search key found in its associated table, the index

is called a dense index. The index entry for dense primary indices has a search key and

a single pointer to the �rst record in the table containing the search key. The index entry

for dense secondary indices has a search key and a list of pointers to records containing the

search key. Formally we have the De�nition 3 below:

De�nition 3 Let Sk be the set of all search keys in the table. A primary index is dense if

and only if there exists a bijection from the index records to search keys in Sk. A secondary

index is dense if and only if there exists a bijection from the index record pointers to records

in the table.
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To �nd a single record using a dense, primary index, we lookup the search key and follow

the pointer to the �rst record. We examine each record to �nd the single record matching

our criteria until we: 1) �nd the record sought or 2) �nd a record with a di¤erent search key.

When we have an index record that maps to more than one search key in its associated

table, the index is called a sparse index. Unlike dense indices we can only use sparse indices

with primary indices since each search key must have an entry for secondary indices. Formally

we de�ne sparse indices as follows.

De�nition 4 Let Sk be the set of all search keys in the table. An index is sparse if it is not

secondary and the mapping from the index records to Sk is not onto.

Searching a sparse index is slightly more di¢ cult. Given an index I with n index records

i1; :::; in and a search key sk we want to �nd the record ij such that searchKey (ij) � sk

and searchKey (ij+1) > sk. After the correct index record is found, we proceed to the table

using the pointer(s) to �nd the correct record.

Dense indices are searched somewhat faster than sparse indices. However the dense

indices takes more space and impose greater maintenance costs on inserts and deletes.

In each database request, time is dominated by retrieving the data from disk. Since data

is retrieved one page at a time, the compromise is to use a sparse index with one index entry

per block stored on disk. This way we �nd the block that contains the record we need, and

retrieve just that block.

It is possible for a single search key to span several pages. For secondary indices this is

not a problem since we wouldn�t necessarily be searching sequentially to start with. With

the primary indices we are left to continue searching page after page until we �nd the correct

record. There are two observations relevant to this situation: There may be a better index

to use for our search or the primary index is too broad in that it does not impose su¢ cient

order on the records. I.e. if we have an index that has two index records for a table with 1

million records, we need to �nd better search key criteria to build the index.
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The opposite problem is to have an index that is too large to �t into memory. When

indices grow too large, we consider multilevel indices.

1.3 Multilevel Indices

Suppose we have an index that will not �t in memory or would simply take to much memory.

Using a standard binary search algorithm to �nd the index record in an index with p = 100

pages, would require

O (dlog2 100e) = 7 (1)

block reads.

We can reduce the size of the search problem by making an index of the index. By

treating the �rst level index that has grown to large as just another table, and creating an

index on it, we build a multilevel index. (See Figure 1) Obviously we can repeat the process

of building indices of indices until we have a small enough outer index to �t in memory.

For the index mentioned above, assuming the second level index will �t in memory we

search the in-memory index to �nd the block containing the index-record we need. Loading

that block we search it sequentially or using a binary search to �nd the pointer to the record

we desire. We retrieve the desired data by loading that block. Thus we have only one block

loaded for the index lookup, and one block loaded for the data. This saves at best 6 loads

in the search process over (1).

We will discuss the B-tree which is similar to a multilevel tree in the second part of the

exam.

1.4 Hashing

A hashing approach to indices computes the location containing the record from the search

key. The "location" generally stores many records and is denoted in the literature as a

bucket. A bucket is typically a disk page, but could be chosen to be larger or smaller than a
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Figure 1: Multilevel Index

disk page.

Let K denote the set of all search key values, and let B denote the set of all bucket

addresses. Let h denote a function called the hash function such that h : K ! B. If we

didn�t put requirements on hash functions, we could end up with a function that maps all

the search keys in K to a single bucket in B. Thus we require hash functions to have the

following two properties:

1. The distribution of search keys in the buckets is uniform.

2. The distribution of search keys in the buckets is random.

We need both of these properties to hold. Consider the following hash function that

maps a name to a bucket based on the �rst letter of the name:

h : Names! firstLetter(Name) (2)

There will be 26 buckets, but the distribution of letters in the English language (or any
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other language) is not uniform, thus some buckets, bq for instance, will have very few if any

names in it, while br may be overloaded. In this case not only is it not uniform, but as a

consequence, it is not random either. If we made a hash function that mapped records to

buckets based on age, we could make the buckets have a uniform distribution in increments

of 10. So that buckets bi contains names of people such that their age is

Name � bi : 10 (i� 1) � age < 10i (3)

Clearly this is uniform, but if we are looking at employees, buckets 1; 2 will be empty com-

pared to 3� 7. Thus (3) is not random.

1.4.1 Bucket Over�ows

Each bucket has a capacity fr which denotes the number of records that will �t in the bucket.

We denote the number of records in a database as nr. Then the number of buckets nb must

be chosen so the following holds:

nb >
nr
fr

(4)

If this condition does not hold, then we have a bucket over�ow. Bucket over�ow may be

caused by some buckets having more records than other buckets. This situation is called

bucket skew. Although theoretically the properties listed above will prevent bucket skew, in

practice they only reduce bucket skew. To protect against bucket over�ow due to skew, we

choose a fudge factor (usually about 0:2) and choose nb as follows:

nb =
nr
fr
(1 + d) (5)

Despite adding a cushion of buckets, the database may still grow beyond the capacity of the

index.

One method to deal with bucket over�ow is to allow the system to create additional
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buckets called over�ow buckets. The original bucket links to the over�ow bucket in a process

called chaining. This approach is analogous to forming another layer in the multilevel ap-

proach. If the bucket is the size of a page, then you may have to load two pages if the �rst

page is full and another has been chained to it. Chaining can reach arbitrary depths and

reduce performance. This is often called closed hashing.

A second method allows records to over�ow to other buckets either through computing

a second hash function or linearly walking through the buckets to �nd one that has room.

With a bad hash function or an unlikely choice of data, you could �ll a single bucket and

then continuously over�ow to other buckets after that. The result is that you may have to

load every block in the index before �nding the entry desired. This method is called open

hashing and has the advantage of not growing. However it severely hampers insert and delete

operations and consequently is seldom used for databases.

1.4.2 Dynamic Hashing

So far we have considered nb, the number of buckets, to be static. Allowing nb to be dynamic

solves the over�ow problem, but introduces a di¤erent problem. How do we change the hash

function to match the size of the index, speci�cally the number of buckets? If the database

system adds new buckets, how does it distribute index records to these buckets uniformly

given that the other buckets are now nearing capacity?

Extendable hashing (Figure 2) uses a hash function that produces a b-bit integer from a

search key. Buckets are then created on demand based on the �rst i bits of the hash value.

These bits are used as an o¤set into an additional table of bucket addresses. Each entry in

the table has a value that indicates how many of the b-bits of the hash value are needed to

correctly select the bucket and a pointer to the bucket. The value determining the number

of bits changes as the database shrinks and grows.

When splitting a bucket there are two cases: (1) If only one entry in the table points to

this bucket, then a new bucket and a new table entry must be created. The contents of the
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Figure 2: Extendable Hashing

bucket is then distributed between the old and new bucket. (2) There are two table entries

pointing to this bucket. Here all that is needed is to create an additional bucket and point

one of the table entries to the new bucket and redistribute the contents.

Removing buckets can be done when a bucket becomes empty. Coalescing buckets can

be done based on a number of factors, most prominent of which is the used capacity of the

buckets.

2 Three Indices

First I will discuss an index used in the MySQL relational database. Relational database

systems are ubiquitous in just about every common data storage application. It resides

at the back end of most accounting software packages, customer relationship management

(CRM) systems, enterprise resource planning (ERP) software and almost any other business

application that must store signi�cant amounts of data. Of course it has been used to store

scienti�c information as well.
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MySQL uses a unique multi index approach to indexing a single table. Most MySQL

indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Ex-

ceptions are that indexes on spatial column types use R-trees, and that MEMORY tables

also support hash indices [24]. We describe and review the B-Tree index in Section 2.1. For

our second index starting in Section 2.2 we discuss two related indices: R-trees and a de-

scendent used in constraint databases, Parametric R-trees (PR-trees). Finally in Section 2.4

we discuss a specialized type of index for selectivity estimation called min-skew.

2.1 B-Tree Index

1. Describe for each index some example database applications. Explain how

the database applications bene�ted by using the index.

B-trees are primarily used in relational databases. The primary goal and bene�t of indices

for databases is to �nd and manage (via inserts, deletes, and updates) information quickly.

We already gave several examples above for relational databases.

The B-Tree as �rst introduced in 1972 by Bayer and McCreight [2]. Although Bayer

never made clear what the B stands for, it is conjectured to stand for Bayer, Balanced or

Boeing for whom he was working at the time. The tree is made up of two di¤erent types of

nodes: tree nodes and leaf nodes. Although the root node is considered a tree node, it may

be a leaf node if there are not enough elements for it to have children.

A tree node has search keys Ki, for 1 � i < m and pointers Pi; Bi, for 1 � i < m, with

a �nal pointer Pm. Figure 3 shows a tree node. Every search key has two pointers prior

Figure 3: Tree Node

to it in the node, and there is an additional pointer after the last search key. Pi points to

another node in the tree where each search key will be less than the search key Ki. Bi points
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to a record containing search key Ki in the case of a primary index, or a bucket of pointers

in the case of a secondary index where each pointer in the bucket points to a record in the

table containing search key Ki. Each tree node may have between
�
m
2

�
and m children.

The methods for maintaining this constraint are discussed with the insertion and deletion

of nodes. The root node is the exception since if we only have m + 1 records it must have

exactly 2 children. We see that the root node exceptions for two cases: (1) If 2 �
�
m
2

�
, the

root may have fewer than
�
m
2

�
children and (2) if the number of index entries is less than

m+1, we have an exception and the root node may be a leaf node that still has the structure

of a tree node with null pointers to no children.

A leaf node does not point to another node so its structure is slightly di¤erent than

a tree node. Figure 4 shows a leaf node.Each pointer Pi in this case points to a record

Figure 4: Leaf Node

containing search key Ki for primary indices or a bucket of pointers which each point to a

record containing search key Ki for secondary indices. Although the nodes are the same size

we can �t more search keys into a leaf node because it has fewer pointers per search key.

Thus we have the condition that m < n. The exact relationship will depend upon the size

of the search keys and the choice of n. Each leaf node may have between
�
n
2

�
and n search

keys unless the root node is the only node.

Now that we have well de�ned nodes, we give the properties that must be satis�ed by a

B-Tree [25]:

1. The root is either a tree leaf or has at least two children.

2. Each node (except the root and tree leaves) has between
�
m
2

�
and m children, where

dxe is the ceiling function.
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3. Each path from the root to a tree leaf has the same length.

Example 5 Suppose we have a table of account records given in Table 1. Then the B-Tree

Account # Town Amount
A-217 Brighton 750
A-101 Downtown 500
A-105 Clearview 300
A-110 Downtown 600
A-215 Mianus 700
A-102 Perryridge 400
A-201 Perryridge 900
A-218 Perryridge 700
A-222 Redwood 700
A-305 Round Hill 350

Table 1: Account Records

for an index on the town is given in Figure 5.

Figure 5: B-Tree of Accounts

2. Evaluate the space requirements of each index and the process required to

build it.

Space Requirements: Let the size of the search key �eld including the pointers be ks.

For each node there will be at least
�
m
2

�
�elds occupied in the node. Given that each node
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could be at minimum capacity, the space requirement for i index records in a primary index

is

spaceprimary = O (2iks)

= O (i) (6)

For a primary index, the value of i may be much smaller than r, the number of records in

the table. If the index is a secondary index, then the pointer will be to a bucket and these

must be included in the size of the index. If we include the buckets as part of the index with

r as the number of records in the table, we have

spacesecondary = O (2iks + r) (7)

Since i � r the above equation reduces to

spacesecondary = O (2iks + r) (8)

� O (2rks + r) (9)

= O (r (2ks + 1)) (10)

= O (r) (11)

in the worst case. Note that r does not represent the size of the table, but the number of

records in the table and in general the size of the index will still be much smaller than the

size of the table.

Creating a B-tree: The process to create a B-tree is simply to allocate an empty node

as the root of the tree. After this we may call insert on the B-tree to add information.

3. Describe the operations that can be performed on the index. Include in the

description the computational complexity of each operation.

12



For a node to be in an illegal state it must have less children or search keys than allowed

or it must have more than is allowed after an insertion has completed. Clearly we will run

into the former problem on a delete, and the latter problem on an insert. The height of the

tree is an important factor in determining the running time of the insert, delete and search

operations.

Insertions: There are three steps to an insert:

1. Search for the position into which the node should be inserted, and insert the value.

2. If the insertion did not over�ll the node, then the process is �nished.

3. If the node has more search keys or children than allowed, split the node, move to the

parent node and check to see if splitting the node caused an over�ll of the parent node.

Loop on this third step until you have a node that does not need to be split.

In the worst case you would need to split every node all the way up to the root. Thus

the cost of an insert in the worst case is on the order of the height of the tree traversed times

the number of elements traversed in each split. Thus the running time given by [7] is

RunningT ime = O (t logt n) (12)

where n is the number of nodes and t is the least number of children (that is t =
�
m
2

�
).

Deletions: There are three steps to the delete operation described in [7] where leaves

always have enough entries to allow a deletion See Appendix A for pseudocode:

1. If the key k is in node x and x is a leaf, delete k from x.

2. If the key k is in node x and x is an internal node, do the following

(a) If the child y that precedes k in node x has at least t keys, then �nd the successor

k0 of k in the subtree rooted at y. Recursively delete k0, and replace k by k0 in x.

(Finding k0 and deleting it can be done in a single downward pass).
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(b) Symmetrically, if the child z that follows k in node x has at least t keys, then �nd

the successor k0 of k in the subtree rooted at z. Recursively delete k0, and replace

k by k0 in x. (Finding k0 and deleting it can be done in a single downward pass).

(c) Otherwise, if both y and z have only t � 1 keys, merge k and all of z into y, so

that x loses both k and the pointer z, and y now contains 2t� 1 keys. Then, free

z and recursively delete k from y.

3. If the key k is not present in internal node x, determine the root ci[x] of the appropriate

subtree that must contain k, if k is in the tree at all. If ci[x] has only t�1 keys, execute

step 3a or 3b as necessary to guarantee that we descend to a node containing at least

t keys. Then, �nish by recursing on the appropriate child of x.

(a) If ci[x] has only t� 1 keys but has an immediate sibling with at least t keys, give

ci[x] an extra key by moving a key from x down into ci[x], moving a key from

ci[x]�s immediate left or right sibiling up into x, and moving the appropriate child

pointer from the sibling into ci[x]. That is we perform a rotation so that child i

of x has enough elements that we can delete one.

(b) If ci[x] and both of ci[x]�s immediate siblings have t�1 keys, merge ci[x] with one

sibling, which involves moving a key from x down into the new merged node to

become the median key for that node.

To illustrate the deletion steps consider the following example.

Example 6 Suppose we have the B-tree shown in Figure 6 Figures 7-12 show each case in

the deletion algorithm. Each �gure is labeled with the element deleted and the case used to

delete it. Case 2b is not shown as it is symmetric to case 2a. Highlighted nodes have changes

from the previous �gure.
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Figure 6: Initial tree

Figure 7: F deleted: case 1

Figure 8: M deleted: case 2a

Figure 9: G deleted: case 2c
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Figure 10: D deleted: case 3b

Figure 11: Tree shrinks in height after D is deleted

Figure 12: B deleted: case 3a
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Here again in the worst case you would need to traverse the tree to �nd a leaf node, and

merge it back up to the top. Thus the worst case running time is O (log n). Since we have

to deal with at least t children or t � 1 keys at each level we have the running time given

in [7] as:

RunningT ime = O (t logt n) (13)

In each of the above cases the search time matched the possible number of merges and

splits that may also occur in the worst case.

Searches: In the above deletions and insertions we referred to �nding or searching for

a speci�c node. Clearly when searching the tree structure, the worst case requires searching

from the root to a leaf node or the height of the tree times every key. Thus the running time

given in [7] is:

RunningT ime = O (t logt n)

4. Where applicable, describe extensions to query languages that use the index.

To the best of my knowledge and research, there are no extensions to SQL or relational

algebra that works with relational databases that have extensions based on the B-tree.

2.2 R-tree Index

1. Describe for each index some database applications. Explain how the database

applications are bene�ted by using the index.

R-trees was introduced by Antonin Guttman to provide an index structure for spatial

data objects. Although multi-dimensional indexing techniques existed, at that time, some

lacked the ability to be e¢ ciently searched when stored in secondary memory. Others were

designed in a way that caused di¢ culty in answering spatial queries [14].

R-trees were speci�cally designed for spatial databases and have only a few other appli-

cations. Spatial access is a rich area that is a specialization of multidimensional indices. An
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excellent review of both the general multidimensional access methods and the subset of those

designed for spatial data is given by Gaede and Günther [12]. Roussopoulos and Leifker [21]

describe the use of R-trees to index pictoral databases. Bohm et. al. [4] review several

indexing methods including R-trees for multimedia applications and note that R-trees are

among a group of indices that support high dimensional indexing. Mamoulis et. al. [16] give

an interesting application of data mining periodic spatial temporal patterns. Within spatial

applications R-trees have been used to perform a couple of additional operations to those

we mention in response to question 4 below.

1. Nearest Neighbor and k-nearest neighbor [20]

2. Window Queries or range queries (count of objects within a window).

Pagel et. al. [17] presents a closer look at di¤erent types of window queries. Most

of the operations de�ned for spatial applications use extensions of the R-tree to optimize

performance. R-trees have also been extended to deal with temporal data as well.

An R-tree is a height-balanced tree similar to a B+-tree with index records in its leaf

nodes containing pointers to data objects. If the index is stored on disk, then nodes may

correspond to disk pages. The bene�ts of the index were to provide a fundamentally unique

way to search and manage spatial data. Many indices have been based on the R-tree that

now support both spatial and temporal indices. I will introduce the R-tree here as a stepping

stone to the PR-tree described below for constraint databases.

Leaf nodes contain index records of the form

(I; tuple� identifier) (14)

where the tuple � identifier refers to a tuple in the database and I is an n-dimensional

minimum bounding rectangle (MBR). I originally was de�ned as a tuple of intervals

I = ([l1; u1]; :::; [ln; un]) (15)
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where each interval [li; ui] de�ned the extent in the ith dimension.

Non-leaf nodes contain tuples of the form

(I; child� pointer) (16)

where I is identical to leaf nodes and child� pointer is a pointer to a lower node in the tree

in which all nodes are contained within the extent of I.

Let M be the maximum number of entries that will �t in one node and let m � M
2
be

the minimum number of entries in a node. An R-tree satis�es the following properties from

[14].

1. Every leaf node contains between m and M index records unless it is the root.

2. For each index record (I; tupel � identifier) in a leaf node, I is the smallest rectangle

that spatially contains the n-dimensional data object represented by the indicated

tuple.

3. Every non-leaf node has between m and M children unless it is the root.

4. For each entry (I; child� pointer) in a non-leaf node, I is the smallest rectangle that

spatially contains the rectangle in the child node.

5. The root node has at least two children unless it is a leaf.

6. All leaves appear on the same level.

Figure 13 shows an example of spatial objects with solid thin lines, and MBRs for those

objects in dotted lines. Figure 14 shows the R-tree for those objects.

2. Evaluate the space requirements of each index and the process required to

build it.
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Figure 13: Spatial Objects and MBRs

Build Process: There is no special build process other than to create an empty tree

consisting of a root node and then start inserting objects into it. The insert process is

evaluated below.

Space Requirements: The space requirements depend upon the number of nodes cre-

ated for N nodes and the height of the R-tree which is given by Guttman [14] as:

h = dlogmNe � 1 (17)

where m is the branching factor. The leaf nodes contain all the objects so we have
�
N
m

�
leaf

nodes. For each layer traversed up the tree the number of nodes decreases by a factor of m.
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Figure 14: R-Tree

Thus the space requirements for N nodes is give by Guttman [14] as:

space =
hX
i=1

�
N

mh

�
+ 1 (18)

where we add 1 for the root node.

3. Describe the operations that can be performed on each index. Include in the

description the computational complexity of each operation.

R-trees support the four standard operations: Search, Insert, Delete and Update. The

algorithms for Search, Insert and Delete are included in Appendix B. Just like the B+-tree,

the R-tree algorithms maintain a balanced tree with data in the leaf nodes.

2.2.1 Searches

As Figure 13 shows, internal node�s MBRs may overlap. Thus a search must traverse all

paths that contain or overlap the query space. It is easy to construct a set of objects such

that every object overlaps every other object. In such a case if you query for a point in the

region where all the objects overlap, every leaf node must be visited. In the worst case, the

search is no better than a sequential search running time of O (N) where N is the number of

objects. However in general, objects do not overlap every other object and in many cases do

not overlap at all. In the latter case we are back to the B-Tree search time of O (m logmN),
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and on average the search time is very close to:

SearchT ime = O (m logmN) (19)

2.2.2 Inserts

Just as there may be more than one leaf node containing a query space, so there may be

more than one node into which an object�s index entry may be inserted. Finding a node

whose MBR contains the object would be the ideal case and even then there may be more

than one such leaf node. At any point in the traversal of internal nodes, it is not possible

to know which of the possible child nodes leads to a leaf node with a MBR that contains

the new object. The heuristic used in [14], �nds the MBR that needs the least enlargement

if no node�s MBR contains the object, or the MBR with the smallest area if more than one

node�s MBR contains the object. In either case a complete traversal of the tree from root to

leaf is required, and possibly several splits back up the tree.

The cost of an insert depends on the cost of several steps. To �nd the node is just a

traversal of the tree and costs O (m logmN). Adding the entry costs O (1). Traversing the

tree back to the root to adjust the MBRs costs O (logmN). The cost of splitting a node on

the traversal up the tree depends on the choice of algorithms to split a node. The preferred

choice is to use an algorithm that is linear in the number of entries in the node O (m). This

algorithm is fast, but does not always produce a good split. A second algorithm is quadratic

in the number of entries and produces slightly better splits. Either one could be considered

constant in the number of nodes split since the number of entries is �xed bym. Consequently

we have an insert cost of the traversal down plus the traversal up times the cost of the split

as:

InsertT ime = O (m logmN +m� logmN) (20)

= O (m logmN) (21)
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in the worst case.

2.2.3 Deletes

Deletions can be performed similar to the B+-tree deletion by borrowing entries from sibling

nodes or merging sibling nodes that become underfull. This would involve a search for a node

costing O (m logmN) followed by a deletion O (1) and then some merging which could be

done in O (M) = O (1) for a total cost similar to B+-trees of O (m logmN) [22]. The original

R-tree presented in [14] used a more expensive method (shown in Appendix B). Instead of

borrowing or merging an underfull node, the underfull node is eliminated and the orphans

collected in a set. Traversing up the tree to make sure the parents are not now underfull,

nodes are removed and orphaned objects continue to be collected. After the root is reached

or we no longer have underfull nodes, the orphans are reinserted into the tree. Thus it is

possible to completely rebuild half of the tree during a delete using this method. We chose

the previous method and give the running time of deletes as:

DeleteT ime = O (m logmN) (22)

2.2.4 Updates

Like many indices, updates to the search key (in this case the spatial dimensions) requires a

deletion followed by an insertion. Other types of updates can be done in place. Given that

a delete and insertion both cost O (m logmN), we have a cost for updates as:

O (m logmN) (23)

4. Where applicable describe an extension to a query language that uses the

index.
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Spatial databases in general have provided a rich (possibly too rich for this paper) �eld

for extending query languages. In general SQL has been the language of choice to extend,

however spatial data is best presented in graphical form and is often stored in graphical form.

Thus the result of a query is often times a picture instead of a relation and the input for a

query is interpreted from mouse actions on a pictoral display. I chose to describe an extension

called Spatial SQL [10]. In this same paper there is a graphical addition called the Graphical

Presentation Language (GPL) dealing with the form of the data in the presentation.

The goal of Spatial SQL is to preserve as much as possible the form of SQL while adding

new domains, operators and predicates [10] (which the author oddly calls relations).

1. Domains: Essentially types of data that can be stored in a database that the system
recognizes as spatial �elds. These are denoted Spatial_x where x 2 f0; 1; 2; 3g and
correspond to points, lines, areas and volumes.

2. Operators: Similar to aggregation operators in where they appear, operators take a
spatial domain and map to either another spatial domain or a real number. The
mappings are listed after the operators below.

(a) dimension: Spatial! R
(b) boundary: Spatial_x! Spatial_y

(c) interior: Spatial_x! Spatial_x

(d) length, area, volume: spatial! R
(e) distance, directions: Spatial � Spatial! R

3. Relationships are predicate symbols that de�ning relationships between two spatial
objects

(a) disjoint

(b) meet

(c) overlap

(d) inside/contains

(e) covers/coveredBy

(f) equal

All operators listed in (2) use pre�x notation, and predicate symbols listed in (3) use

in�x notation.

24



Example 7 Suppose we create a table

CREATE TABLE city (

name char(20)

geometry spatial_2

point spatial_0);
Then we could perform a query below to determine the distance.

SELECT distance(�nish.point,start.point)

FROM (SELECT * FROM city WHERE name=�Lincoln�) as start

(SELECT * FROM city WHERE name=�Omaha�) as �nish

We note that the extension above is essentially syntactic sugar, and that behind all these

extensions must reside a foundation for handling multi-dimensional objects. Further we note

that all these functions are now available in constraint databases [18] which we will look at

next as an extension to R-trees.

2.3 Parametric R-trees

1. Describe for each index some example database applications. Explain how

the database applications are bene�ted by using the index.

The Parametric R-tree (PR-Trees) introduced and discussed in [5, 18] were designed

speci�cally for moving objects in constraint databases. Many di¤erent database systems now

have support grafted into them to support spatial data. We are seeing increased support for

moving objects. Indexing moving objects has given rise to many di¤erent indices that fall

into three broad categories:

1. Trees: Of which there are many variations. Trees are very popular because they scale

to work in main memory or in secondary memory and the structure may be searched

quickly.

2. Hashes: Generally these hashes are variations of extendable hashing or linear hashing.
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For in memory indices, these provide superior speed but do not scale well outside of

main memory.

3. Space �lling curves: These provide a unique style of indexing that is somewhere between

hashing and trees. In fact the Quadtree is a direct descendent of space-�lling curves.

The purpose of the broad taxonomy of indices given above is to emphasize that trees in

some form or another dominate indices. In multidimensional data, usually some descendent

of the R-tree is used, and for relational databases usually some type of B-tree is used.

The spatial temporal database application that tracks moving points has all the same

goals of spatial databases with the added dimension of time. In fact there is no reason to

treat time di¤erently from the other dimensions when the objects rarely move. When objects

move and change their motion at frequent intervals, indexing schemes for spatial databases

fail to accurately maintain knowledge of the objects location at any given time. This can be

seen most clearly in the simple example of a movie scene.

Example 8 During a scene objects appear to move about as their physical location changes

over time. For the human eye it is enough to provide 30 frames per second (fps) for the

brain to interpret the images as smooth �owing motion. Disregarding for the moment that in

many applications (such as high energy physics) the human eye is not fast enough, consider

the di¢ culty of indexing objects through a 30 second scene at 30 fps. If there are 10 objects,

we have

10� 30� 30 = 9000 (24)

di¤erent tuples. That is �ne for a commercial, but what about a 1.5 hour movie? That gives

us

10� 1:5� 60� 60� 30 = 1; 620; 000 (25)

tuples if all we have is 10 objects in all our scenes.
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In the above example we consider the movie as a window (a very small window) on a

database of moving objects. Since the actual database may need to track thousands or even

millions of objects at all times in a much larger window it becomes necessary to organize

spatial temporal data di¤erently than spatial or relational data. This is where special spatial

temporal indices bene�t spatiotemporal database applications.

We can solve these problems with appropriate modeling in constraint databases. Con-

straint databases allow you to model the motion as a function of time and therefore you need

not update the position of an object because that position can be determined from its mo-

tion as stored in the constraint database. Although it is possible to model non-linear motion

in constraint databases using an approximation technique, precise knowledge of motion is

not always known from the collection of data. Consequently moving objects are often times

modeled as linearly moving objects. Updates then occur to the object to provide a piecewise

linear model of the motion. Consider the following example from [18].

Example 9 The Airplane Relation in Table 2 describes the movement of eight airplanes as

parametric rectangles.

ID X Y T
r4 [7t+ 30; 7t+ 50] [6t+ 80; 6t+ 100] [0; 10]
r5 [12t+ 30; 12t+ 40] [5t+ 50; 5t+ 65] [0; 10]
r6 [6t+ 75; 7t+ 90] [8t+ 70; 8t+ 80] [2; 10]
r7 [0; 15] [5t+ 40; 5t+ 55] [0; 9]
r8 [0; 12] [4t+ 20; 4t+ 40] [1; 10]
r9 [30; 50] [7t+ 10; 7t+ 20] [0; 10]
r10 [�5t+ 80;�5t+ 100] [2t; 3t+ 20] [0; 10]
r11 [�6t+ 60;�6t+ 70] [�3t+ 30;�2t+ 40] [0; 10]

Table 2: Airplane Relation

The minimum bounding parametric rectangles are given by Table 3. This gives a PR-tree

as shown in Figure 15.

2. Evaluate the space requirements of each index and the process to build it.
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ID X Y T
r1 [7t+ 30; 7t+ 90] [5t+ 50; 6t+ 100] [0; 10]
r2 [0; 50] [5t+ 10; 5t+ 55] [0; 10]
r3 [�6t+ 60;�5t+ 100] [0; t+ 40] [0; 10]

Table 3: Airplane MBPR

Figure 15: Airplane PR-tree

2.3.1 Minimum Bounding Parametric Rectangles

First we need to de�ne parametric rectangles and minimum bounding parametric rectangles.

De�nition 10 A parametric rectangle is a d-dimensional rectangle de�ned by the extreme

points in each dimension where the extreme points are linear functions of time:

extreme points = x
[
i (t) ; x

]
i (t) (26)

De�nition 11 The minimum bounding parametric rectangle (MBPR) of a set of parametric

rectangles S in d dimensions is a parametric rectangle r such that

1. r contains all the parametric rectangles in S

2. The area of the project of r onto the (xi; t) space is minimized for each i = 1; :::; d.

The algorithm to �nd the MBPR of a set S is given in Appendix C

Theorem 12 [18]The minimum bounding parametric rectangle R of a set S of n, d-dimensional

parametric rectangles can be computed in O (d n log n) time.
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The parametric R-tree is de�ned as follows:

De�nition 13 A parametric R-tree is an index structure for parametric rectangles. It is

a height-balanced tree in which each node has between M=2 and M children, where M de-

pends upon the page size. Each node of a PR-Tree is associated with a minimum bounding

parametric rectangle.

Build Process: The process to build the PR-tree is to create a root node �rst and then

insert each additional object using the insert algorithm for every other object.

Space Requirements: Suppose we have n moving objects in a PR-tree. Each entry

in a node has a linear function for the lower bound and upper bound of each dimension,

a lower and upper bound constant for the time and a pointer. Each node has at most M

entries. Thus the space requirements for each node will be at most O (M � (d+ 2)). Since

d is a constant and usually a small constant we have O (M � (d+ 2)) � O (M). Of course

bothM and d are constants in reality and thus we have constant size nodes but we leave the

space requirement as O (M). Since each object is represented by a leaf node, the size of the

structure will be the number of leaves, n, plus the number of internal nodes times their size:

O (n) +O
�
M � n

2

�
= O

�
n+

M + 2

2

�
= O (n) (27)

The constant hidden in the O notation re�ects the fact that a tree has precisely
�
n
2

�
internal

nodes for n leaves.

3. Describe the operations that can be performed on the index. Include in the

description the computational complexity of each operation.
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2.3.2 Searching the PR-Tree

Revesz [18]1 shows that searching the PR-tree can be checked in O(d) if two d-dimensional

linear parametric rectangles have a non-empty intersection. Thus searching the index for the

di¤erent types of non-empty intersection de�ned for spatial queries where we always choose

one child, may be done in O (M logM n) time. Similar to R-trees however multiple children

may have non-empty intersections and thus in the worst case we may have to traverse the

tree to every node which degenerates to a sequential search of O (n) time.

2.3.3 Insertion

The insertion algorithm traverses the tree from the root to a leaf node expanding the MBPR

at each level. Since a key issue in search performance is minimizing the number of nodes

one has to visit, we choose the child node that needs the least volume enlargement. This

means calculating the least volume enlargement for each for between M
2
and M parametric

rectangles at each internal node of the tree. When an appropriate leaf node is found, and the

number of elements in the node is less thanM , the node is inserted and the process �nishes.

If the node has M elements the node must be split, and the split propagated up the tree.

When a node must be split, we �nd the two elements ri; rj in the node such that the

volume of the MBPR of ri and rj is the largest in comparison with the volume of ri and rj.

We can state this as follows:

max
ri;rj2E

(V ol (FindMBPR(ri; rj))� (V ol (ri) + V ol (rj))) (28)

After the �rst entries for the two nodes have been chosen, we insert the rest of the entries

based on the least enlargement principle. For pseudocode see Appendix C.

Theorem 14 The insertion of a parametric rectangle into a PR-tree can be done in O (M2d logM n)

time where M is the maximum number of children per node, d is the dimension, and n is

1by Theorem 14.2.2
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the number of parametric rectangles. [18]2

Proof. As we go down the tree we need at each level to �nd the appropriate subtree and

update the MBPR of the chosen subtree. The computation of two parametric rectangles

takes O (d) time. The computation of the volume of a parametric rectangle depends on its

dimension and takes O (d) time. There are at most M entries in a node. Hence computing

their enlargements and selecting the minimum out of these requires O (dM) time at each

level. The height of a PR-tree with n parametric rectangles is logM n. Therefore, going down

the PR-tree to �nd an appropriate leaf node requires O (dM logM n) time.

If we add the new entry to a node that has less than M entries, then the splitting is

not required and we are done. Otherwise, we need to split the last non-leaf node and then

propagate the split upward. Each split requires �nding the pair of nodes that are least

desirable together. This requires M2 computations of MBPRs of two parametric rectangles;

hence this can be done in O (dM2) time. To add each of the M � 2 other entries to either of

the two requires O (dM) time. Because the height of a PR-tree with n parametric rectangles

is logM n, the total time for splitting including propagation upward is O (dM
2 logM n).

Finally, note that the PR-tree remains balanced after each insertion because the height

of the PR-tree increases only when we split the root node, and that increases each path from

the root to a leaf by one.

2.3.4 Deletion

Deletions in the PR-tree are accomplished di¤erently than the R-tree. If deletion is de-

sired, a secondary search tree (or hash table) of identi�ers with pointers to their associated

parametric rectangles in the PR-tree are created for each item on insertion. Then to delete

parametric rectangle R with identi�er i we search the secondary search tree for i and follow

the pointer to R. We must delete both the node in the secondary tree and R from the

PR-tree. If the parent node p of R has at least M
2
entries after deletion we simply recompute

2Theorem 17.2.1
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the MBPR for p which takes O (logM n) time. However if p has less than
M
2
entries we do

the following: Let p0 be the parent of p. Delete p and insert the children of p into the subtree

rooted at p0. Revesz [18] gives the running time as:

O
�
dM3 logM n

�
(29)

For pseudocode see Appendix C.

2.3.5 Updates

Updates are accomplished by deleting and reinserting a node. See Insertions and Deletions

above.

4. Where applicable, describe extensions to query languages that uses the index.

Although SQL may be used to query constraint databases, datalog appears to be a

favorite method. Since constraint databases natively handle spatial temporal data including

moving objects, the indexing method doesn�t speci�cally extend the query language. All

the spatial query types introduced for R-trees may be used with the addition of a time

parameter. However spatial temporal data in general allows for new types of queries that

relate to the new time dimension available. The concept of �nding aggregations of max

and min of a moving query rectangle over time were introduced and discussed in [19, 6].

Other operations including max in both time and variable space have not been explored in

the literature possibly due to the large running time complexity. Tao and Papadias [23]

introduced a special case of max aggregation over time by considering dynamic aggregation

as a running total within a query window that is valid for the current time only.

2.4 Min-Skew BSP

1. Describe for each index some example database applications. Explain how

the database applications are bene�ted by using the index.
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Spatial selectivity estimation was �rst introduced by Belussi and Faloutsos [3]. Subse-

quently Archarya Poosala and Ramaswamy [1] gave theMin-Skew binary space partitioning

index algorithm we review here.

This specialized index is designed speci�cally for spatial databases but may be used for

multidimensional data in general. It has also been used in spatiotemporal databases. Data

mining may use this index for approximate clustering as pointed out by Kollios et. al. [15].

The most common use however is with spatial or spatiotemporal data.

Selectivity estimation has been used in relational databases as a method to estimate

query running time and query result set size prior to running a query. The goal of selectivity

estimation in spatial applications is to partition the space into buckets such that each bucket

has a uniform distribution of objects. That is we wish to minimize the spatial-skew of the

distribution. Spatial-skew is de�ned in [1] as follows.

De�nition 15 Consider a grouping G with buckets Bi, 1 � i � �. Let ni be the number

of points in Bi. The spatial-skew si of bucket Bi is the statistical variance of the spatial

densities of all points grouped within that bucket. The spatial-skew S of the entire grouping

is the weighted sum of spatial-skews of all the buckets:
P�

1 ni � si.

With a uniform distribution of objects in each bucket, if a query then selects an area ai

of a bucket i with area Ai containing Oi objects, then we can estimate the number of objects

returned by a query for that bucket as qi:

qi =
ai
Ai
Oi (30)

Chen and Revesz [6] used the index for estimating the max count over time aggregation

for moving points using the dual transform of a moving point. This index like most recent

indices are specially designed for spatiotemporal databases. However generalizing the method

to non-spatial, multi-dimensional data may make it useful for knowledge discovery and data

mining. Due to the static nature of the index, it would not be useful for multimedia database
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applications where the objects change their motion often, appear, disappear and reappear

frequently.

In general, selectivity estimation in its various forms allows for the neglect of some aspects

of the stored information while optimizing on other aspect(s). The goal is to approximate the

answer to a speci�c type of query. If a particular application requires only that speci�c type

of query, estimation methods may organize the data in such a way that not all information

is preserved, but the information needed to answer the query is still available. Essentially

this amounts to pruning or aggregating information in the index to obtain the minimum

information needed. This type of highly specialized index has limited use, but provides

extremely fast search capabilities.

Example 16 Suppose we have a set of linearly moving object shown in Figure 16. We

Figure 16: Spatial Distribution

partition the space for selectivity estimation using a binary space partition. That is we

partition a bucket that reduces the distribution skew along one of the axes. This is shown

in Figure 17 where we have 6 partitions. The algorithm may be given a speci�c number of

partitions, or it may stop when the maximum skew of any one bucket is under a given value.

2. Evaluate the space requirements of each index and the process required to

build it.
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Figure 17: Binary Space Partition

2.4.1 Min-Skew Indexing Algorithm

For the moving points dataset we have a list of i-dimensional points. Each data point is a

tuple of position and velocity values:

data point = (p1; v1; :::; pn; vn) (31)

The algorithm �rst determines the space in question and overlays it with a grid of cells. In

this case the grid is a 4-dimensional grid of hyper-cubes. The size of the cells determines the

�rst level of approximation and each cell is given a count of the objects that overlap it. The

histogram starts out with a bucket containing all the cells. Then the bucket is partitioned

into n buckets. To chose the partition, we minimize the spatial-skew from De�nition 15.

The algorithm to generate the index is given in Figure 18.

2.4.2 Min-Skew Space

Interestingly enough, the Min-Skew algorithm does not specify a structure to store the

buckets or cells. Each bucket will have a lower and upper bound for each dimension and

the number of objects contained in it when the indexing algorithm has completed. At that
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Hyper-Bucket-Indexing(S,c,n,H)
input: S is the set of 4-dimensional points to be

indexed, c Cell size, and n hyper-buckets.
output: The histogram H.
Place the points into cells
H gets all the cells in the 4-dimensional space.
while H has less than n buckets

for each bucket Bi in H do
Compute the spatial-skew of Bi and
�nd the split point along its dimensions
that will produce the maximum reduction
in spatial-skew

end for
Pick the bucket B whose split will lead to the
greatest reduction in spatial-skew.
Split B into two buckets B1 and B2 and assign
regions from B to B1 and B2.

end while
Assign each cell in the input to the hyper-bucket
whose Minimum bounding rectangle contains
the center of the rectangle

Figure 18: Hyper-bucket indexing algorithm.

point we may discard all the information used to build the index. Thus there is the space

requirements to build the index and the space requirement for the index itself.

Suppose we are given n spatial objects in a database. Let li; ui be the lower and upper

bounds respectively of the space contained in the database. Let wi be the width of each cell

in the ith dimension. Then we will have c number of cells de�ned as follows:

c =
Y
i

��
ui � li
wi

��
(32)

The space requirements for the grid are then O (c). The number of buckets � is a given

parameter. Each bucket contains the upper and lower bounds and the number of objects

overlapping it. Thus the space requirements for the buckets is O (�).

3. Describe the operations that can be performed on the index. Include in the
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description the computational complexity of each operation.

There are only two operations currently supported on this type of index on moving

objects: Build and selection estimation. This index assumes static information such as

spatial data that rarely if ever changes. Because it assumes all information is available at

index build time, there is no way to insert or delete information from the index without

upsetting the spatial skew. This is also applicable to what we might consider throw away

data. That is data that we need to run several queries on quickly and then discard. We

give as an example the one dimensional search algorithm and the max-count search problem

from [6].

Let Q1; Q2 be two query points such that the answer to the query is the number of points

between Q1 and Q2 at time t. Now a line through a point p with a slope of �t is such that,

points above the line are ahead of the point p and points below the line are behind the point

p. Let P (t) = vxt+ x0 and Q (t) = 2t+ 5. Then P (t) is in front of Q if and only if

P (t) > Q (t)

vxt+ x0 > 2t+ 5

x0 > (2� vx) t+ 5

x0 > �t (vx � 2) + 5 (33)

The last inequality is true if and only if the point P (t) is above the line through Q with

slope �t. This is similarly true for points below the line when switching the inequality.

Adding two query points Q1 and Q2 to Figure 17, we show the query area as the grey

band bounded by the lines through the query points in Figure 19. The query area intersects

three buckets, but one of them is empty and does not contribute to the selection estimate.

The top bucket actually contains all the objects, but will return a smaller value for that

bucket since it does not cover the entire area of the bucket. The lower left bucket includes 3

out of 8 points, but will return more than 3 because it covers about half of the bucket. Thus
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Figure 19: Query Area

we see in this example that the estimated result will be close to the actual result.

4. Where applicable, describe extensions to query languages that uses the index.

Selectivity estimation to �nd a fast estimate of the number of objects in spatial database

is an addition that query languages may indirectly support using a new operator or by

turning on the ability to estimate.

An extension to selectivity estimation is Max-Count over time described in [6] which

extends a query language to include a max-count aggregation estimation operator. To un-

derstand how the operator implementation works is much easier than to wade through the

math involved. If we allow time to change in the query depicted in Figure 19, then the lines

will still go through Q1 and Q2, but the slopes of the lines will change as �t changes. As

long as the lines stay in the same buckets, we can write the area in each bucket as a function

of t. The form of the function is given in [6] as:

Area (t) = at+
b

t
+ c (34)

where a; b; c are real constants corresponds to the di¤erent polygon shapes that the query

38



area may form. Thus we can maximize the sum of the areas to �nd an estimated max-count

over time segments where Equation 34 does not change. The sides used to calculate the

query area in a bucket change when a line crosses a vertex and thus Equation 34 will change

whenever a line crosses a vertex of a bucket. The maximum number of vertices that the lines

may cross is O (B) and thus we can calculate the estimated max-count over time in O (B).

3 Current trends in indexing research

The concepts of indices are most often associated with databases, however information re-

trieval applications such as search engines use indexing techniques to search unstructured or

semi-structured data. This has been a hot area of research in the past few years in companies

such as Google.com. Current trends include the indexing of all manner of media including

voice and video. Research in this area is ongoing.

The concepts of the semantic web thought up by world wide web inventor Tim Burners-

Lee is an active area of research that includes indexing annotated data using the resource

de�nition framework (RDF). According to the W3C working group [13] the semantic web

is still developing. "The Semantic Web is a vision: the idea of having data on the web

de�ned and linked in a way that it can be used by machines not just for display purposes,

but for automation, integration and reuse of data across various applications." There has

also been e¤orts to annotate unstructured data. Dowman et. al. [9] recently introduced a

method for temporally accurate, conceptual semantic annotation of broadcast news using

speech recognition to match audio resources to textual news stories on the web. Ding et.

al. [8] introduced swoogle: a crawler-based indexing and retrieval system for the Semantic

Web. Finin et. al. [11] give a nice overview of information retreival and the Semantic Web.

The few examples we cited above show that indexing di¤erent types of media is a trend that

continues to develop.

Indexing is also developing in spatiotemporal applications as we have reviewed above.
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Other areas such as knowledge discovery and datamining also are developing advanced in-

dexing techniques for specialized areas of interest.

Instead of diving into these areas and providing additional references, I would like to

identify two divergent underlying trends. The �rst trend is in developing indices for special-

ized applications. Some of our example indices we reviewed and the examples cited above

show that indices have entered an era of specialization. Special indices such as R-trees,

PR-trees, R+-trees, R�-trees, K-D-trees as well as space-�lling curves and many others have

been developed in an e¤ort to solve speci�c types of spatial and spatiotemporal problems.

This trend towards specialization in many applications has led leading database venders such

as Oracle to include the capability to add external indices. Thus we have a trend toward

diverging indices due to specialization.

The second trend is less a trend than a recognition of convergence to the optimal data

structure: the tree. Within the divergent trend identi�ed above most index methods for

secondary storage have used some form of the tree data structure. This trend of optimizing

the tree structure for special applications is likely to continue.

We conclude that just as for relational databases where the B+-tree became a standard

for relational database applications, eventually each separate type of application will evolve

a standard index data structure. Because many types of information (spatiotemporal, audio,

video, and constraint data) are continuously being stored and because the semantics of these

data are trying to be captured in indices, we believe that the area of indices will be a rich

�eld for research for some time to come.
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A B-tree Algorithms

Below are the algorithms for search, delete, and insert. Each node has a boolean value
indicating if it is a leaf: leaf[x] and a value indicating the number of entries in the node n[x].
The tree has a root pointer: root[x]. All the pseudocode given below is taken from [7]

B-tree-Create(T) //tree T
x = Allocate-Node()
leaf[x] = true
n[x] = 0
root[T] = x

B-tree-Search(x,k) //x-node, search key k
i = 1
while i � n[x] and k > keyi[x]

i = i+1
if i � n[x] and k = keyi[x]

return (x,i)
if leaf[x]

then return null
else return B-tree-Search(Childi[x], k)

B-tree-Insert(T,k)
r = root[T]
if n[r] = 2t-1
then {

s = Allocate-Node()
root[T] = s
leaf[s] = false
n[s] = 0
child1[s] = r
B-tree-Split-Child(s,1,r)
B-tree-Insert-NonFull(s,k)

}
else {

B-tree-Insert-NonFull(r,k)
}

B-tree-Insert-NonFull(x,k)
i = n[x]
if leaf[x]
then {

while i � 1 and k < keyi[x]
{
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keyi+1[x] = keyi[x]
i = i - 1

}
keyi+1[x] = k
n[x] = n[x] + 1

}
else {

while i � 1 and k < keyi[x]
{

i = i - 1
}
i = i + 1
if n[childi[x]] = 2t - 1
then {

B-Tree-Split-Child(x,i,childi[x])
if k > keyi[x]

i = i + 1
}
B-tree-Insert-NonFull(childi[x],k)

}

B-tree-Delete(root[T],k)
(x,i) = B-tree-Search(root[T], k)
if x == null

return null
//Step 1

if leaf[x] == true
then {

delete keyi[x]
}

//Step 2
else {
// 2.a

if n[childi�1[x]] � t
(y,j) = succ(childi�1[x])
k = keyj[y]
B-tree-Detele(y,keyj[y])

//2.b
else if n[childi[x] � t

(y,j) = pred(childi[x])
k = keyj[y]
B-tree-Detele(y,keyj[y])

//2.c
else

y = merge(childi�1[x],k,childi[x])
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for j=i to n[x]-1
keyj = keyj+1
childj[x] = childj+1[x]

n[x] = n[x] - 1
free(childi[x])

}
//Step 3
(c) = ChildContaining(x,k)
if (c == null)

return //we deleted it return
if (leaf[c] != true)

//step 3.a
if n[childi[c]] = t-1

if (n[childi�1[x]] > t-1)
borrowleft(x,i)

if (n[childi+1[x]] > t-1)
borrowright(x,i)

//Step 3.b
else

c = merge(childi�1[x],k,childi[x])
for j=i to n[x]-1

keyj = keyj+1
childj[x] = childj+1[x]

n[x] = n[x] - 1
free(childi[x])

B-tree-Delete(c,k)

borrowleft(x,i)
y = childi�1[x]
z = childi[x]
k = keyi[x]
keyi[x] = keyn[y][y]
insertKeyInFront(z,k)

borrowright(x,i)
y = childi+1[x]
z = childi[x]
k = keyi[x]
keyi[x] = key1[y]
addKeyToEnd(z,k)

succ(x)
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if (leaf[x] == true)
return (x,n[x])

else
return succ(childn[x])

pred(x)
if(leaf[x] == true)

return (x,1)
else

return succ(child1[x])

B-tree-Split-Child(x,i,y) //where y is the ith child of x and y is being split.
z = Allocate-Node()
leaf[z] = leaf[y]
n[z] = t - 1 //where t is the minimum degree of a node
for j=1 to t-1

keyj[z] = keyj+t[y]
if not leaf[y]
{

for j = 1 to t
cj[z] = cj+t[y]

}
for j = n[x] downto i

keyj+1[x] = keyj[x[
keyi[x] = keyt[y]
n[x] = n[x] + 1

B R-Tree Algorithms

Below are algorithms Search, Insert, and Delete adapted to pseudo code from [14]. The
pseudo code exudes an arroma of java. Not all the methods used exist in the code, but those
omitted should have clear meaning.

Search(SearchRectangle S, R-Tree T)
ReturnVal = {}
if (!isLeaf(T))
For (Entry E : root(T))

if (doesOverlap(E,S))
ReturnVal = ReturnVal [ Search(E.Node, S)

else
For (Entry E : root(T))

if (doesOverlap(E,S))
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ReturnVal = ReturnVal [ E
return ReturnVal

Insert(Entry E, R-Tree T)
Node L = chooseLeaf(E,T)
if (hasRoom(L))

L.add(E)
else

Node LL = splitNode(L,E) //Splits node L !L,LL and adds E to L
If (isRoot(L))

Create a new root and point to L and LL.
AdjustTree(L,LL)

Delete(Entry E, R-Tree T)
L = findLeaf(E)
if (L == null)

return
L.remove(E)
CondesnseTree(L)
if (oneChildRoot(T))

make child new root.
return

ChoseLeaf(Entry E, R-Tree T)
Set N=root(T)
While (!isLeaf(N))

Let F be the entry in N whose rectangle needs the least
enlargement to include E. Resolve ties by using the
rectangle with the smallest ares.

N=F
return N

AdjustTree(Node L, Node LL)
N=L
NN=LL
While (!isRoot(N))

P = parent(N)
EN=entry(N,P) //the entry of N in the parent.
Adjust EN so that it tightly encloses all entry rectangles in N
If (NN != null)

create ENN with a pointer to NN
if (isRoom(P))

P.add(ENN)
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else
PP = SplitNode(P,ENN)

N = P
NN = PP

return

Eliminate underfull node and collect the orphans in Q. Walk up thetree doing this and
then, reinsert the orphans. Deletes can be expensive.
CondenseTree(Node L, R-Tree T)

N=L
Q={} //the set of eliminated nodes
while (!isRoot(N))

P = parent(N)
EN=entry(N,P) //the entry of N in hte parent.
if (entryCount(N) < m)

delete EN from P.
Q = Q [ EN

else
Adjust EN so that it tightly encloses
all entry rectangles in N

N = P
for (E in Q)

insert(E,T)
FindLeaf(Entry E, Node T)

if (!isLeaf(T))
for (Entry F : T)

if (F.contains(E))
FindLeaf(E, F.Node)

else
for (Entry F : T)

if (F == E)
return F

return null
Quadradic Split(Node L, Entry E)

Set<Entry> M = Node.entries [ E
L = new Node()
LL = new Node()
L.add(PickSeeds())
LL.add(PickSeeds())
while (M.count > 0)

if (L.count - m = M.count) //the rest of the entries must go to L
L.addAll(M)

else if (LL.count - m = M.count) // the rest go to LL
LL.addAll(M)

else
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Entry EE = PickNext()
if (L.coversAmount(EE) > LL.coversAmount(EE)))

L.add(EE)
else if (LL.coversAmount(EE) > L.coversAmount(EE))

LL.add(EE)
else if (L.area() < LL.area())

L.add(EE)
else if (LL.area() < L.area())

LL.add(EE)
else if (booleanRandomChoice)

L.add(EE)
else

LL.add(EE)
return LL //we assume L is passed by reference and is updated

PickSeeds(Set<Entry> M, Entry S1, Entry S2)
int cd = infinity
for all combinations of Ei; Ej 2M such that i 6= j

j = MBR(E1; E2)
d = j:area� E1:area� E2:area
if (d < cd)

cd = d
S1 = Ei
S2 = Ej

return
LinearPickSeeds(Set<Entry> M, Entry S1, Entry S2)

Mbr = MBR(M)
diff[] = new int[dim]
d=0
lowest[] = fEinf ; Einf ; :::; Einfg
highest[] = fE� inf ; E� inf ; :::; E� infg
for (i = 1; i � dim; i++)

for (Entry E : M)
if (E.lowerBound[i]>highest[i].lowerBound[i])

highest[i] = E
if (E.upperBound[i]<lowest[i].upperBound[i])

lowest[i] = E
for (i = 1; i � dim; i++)

diff[i] = (highest[i].lowerBound[i] - lowest[i].upperBount[i]) / Mbr.width[i]
if (diff[i] > d)

S1 = highest[i]
S2 = lowest[i]

return
PickNext(Set<Entry> M, Node L, Node LL)

min_cost = infinity
Entry pick
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for (Entry E : M)
d1 = area increase required if covered by L
d2 = area increase requried if covered by LL
if (j(d1 � d2)j < min_cost)

pick = E
return pick
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C MBPR Algorithms

This section gives pseudocode for the insert and delete operations of the PR-tree. This is
just simple code that outlines the operations and you will �nd some concepts written in, but
it is intended to give a feel for the algorithms.

FindMBPR(Set<ParametricRectangles> S)
tmin=minr2S

�
r; t[
�

tmax=maxr2S
�
r; t]
�

tmed=(tmax + tmin) =2
for each dimension xi do

Find Si the set of extreme points of projections (xi; t) of S
Compute the convex hull Hi of Si
Find the edges of Hi that intersect with tmed
Construct x[i; x

]
i for the MBPR

Insert(ParametricRectangle pr)
//Find the appropriate leaf (simple search through the tree using
//FindMBPR where we choose the node with the least enlarment of
//the MBPR)
Node n = findLeaf(pr)
if (n.count < M/2)

add the rectangle to the node
else

Node nn = split(n)
n.parent.add(nn)

split(Node n)
find ri; rj such that maxri;rj2E V ol (FindMBPR(ri; rj))� (V ol (ri) + V ol (rj))
Node n1.add(ri)
Node n2.add(rj)
for k 6= i; j

insert rk into rl where l is given by
minl2fi;jg (V ol (FindMBR (rl; rk))� V ol (rk))

n = n1
return n2

Delete(SecondaryTree b, PRtree pt, id)
SecondaryNode sn = b.find(id);
PRNode p = sn.parametricrectangle.parent();
p.delete(sn.parametricrectangle)

PRNode.delete(ParametricRectangle pr, ChildSet cs)
remove pr
if (childcount < M/2)

p2 = this.parent();
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if cs == null
cs = new Set<Child>

cs.addAll(myChildren)
p2.delete(p,cs)

else
adjust MBPR(pr)
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